Formation of complex polymeric microstructures through physical self-organization and capillary dynamics
نویسندگان
چکیده
We present a generic way of forming various complex polymeric microstructures using physical self-organization and capillary dynamics. A simple lithographic tool called capillary force lithography is utilized for this purpose, in which the pattern formation is driven by capillary force, not involving any external force or modification. In this method, a patterned polydimethylsiloxane mold is placed on a spin-coated polymer film on a substrate and then the temperature is raised above the polymer’s glass transition temperature, allowing for a surface tension-driven flow. One-step and two-step applications of the mold lead to various microstructures in which wetting and dewetting as influenced by the mold channel width and the film thickness gives rise to the self-organization of the structures. The method can also be utilized to produce a polymer sheet with both sides patterned and these sheets can be laminated to generate multi-level structures. An intriguing aspect of patterning microsphere surfaces is also presented. The complex microstructures are not easily accessible by other methods, thus providing a simple and economic way of generating potentially useful templates for biomedical, microfluidic, and optical applications.
منابع مشابه
Guided and fluidic self-assembly of microstructures using railed microfluidic channels.
Fluidic self-assembly is a promising pathway for parallel fabrication of devices made up of many small components. Here, we introduce 'railed microfluidics' as an agile method to guide and assemble microstructures inside fluidic channels. The guided movement of microstructures in microfluidic channels was achieved by fabricating grooves ('rails') on the top surface of the channels and also crea...
متن کاملElectrically induced formation of uncapped, hollow polymeric microstructures
Uncapped, hollow polymeric microstructures were fabricated on a silicon substrate using electric field induced stretching and detachment. Initially, square or cylinder microposts were generated using a solvent-assisted capillary molding technique, and a featureless electrode mask was positioned on the top of the microstructure with spacers maintaining an air gap (∼20 μm). Upon exposure to an ex...
متن کاملOptimum driving a Z-pinch for soft X-Ray lasers
A capillary plasma z-pinch as an alternative active medium of soft X-Ray lasers was studied experimentally and theoretically. The theoretical analysis was based on the self consistent solution of the so called “snow plow” model. The dynamics of pinched plasma is determined by the capillary parameters and by the time dependence of electrical current passing through it. The current time dependenc...
متن کاملGAME OF COORDINATION FOR BACTERIAL PATTERN FORMATION: A FINITE AUTOMATA MODELLING
In this paper, we use game theory to describe the emergence of self-organization and consequent pattern formation through communicative cooperation in Bacillus subtilis colonies. The emergence of cooperative regime is modelled as an n-player Assurance game, with the bacterial colonies as individual players. The game is played iteratively through cooperative communication, and mediated by exchan...
متن کاملFabrication, densification, and replica molding of 3D carbon nanotube microstructures.
The introduction of new materials and processes to microfabrication has, in large part, enabled many important advances in microsystems, lab-on-a-chip devices, and their applications. In particular, capabilities for cost-effective fabrication of polymer microstructures were transformed by the advent of soft lithography and other micromolding techniques (1, 2), and this led a revolution in appl...
متن کامل